
Journal of Geometry and Physics 35 (2000) 1–34

A Morse theory for massive particles and
photons in general relativity

Fabio Giannonia, Antonio Masiellob,∗, Paolo Piccionec

a Dipartimento di Matematica e Fisica, Universitá di Camerino, Via Madonna delle Carceri,
20-62032-Camerino (MC), Italy

b Dipartimento Interuniversitario di Matematica, Politecnico di Bari, Via E. Orabona 4, 70125-Bari, Italy
c Departamento de Matemática, Universidade de São Paulo, São Paulo, SP, Brazil

Received 4 May 1999

Abstract

In this paper we develop a Morse theory for time-like geodesics parameterized by a constant
multiple of proper time. The results are obtained using an extension to the time-like case of the rel-
ativistic Fermat principle, and techniques from Global Analysis on infinite dimensional manifolds.
In the second part of the paper we discuss a limit process that allows to obtain also a Morse theory
for light rays. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In an arbitrary relativistic space–time, modeled by a four-dimensional time-oriented
Lorentzian manifold(M, g), the trajectories of massive objects or massless particles, like
photons, that move freely under the action of the gravitational field, are geodesics. These
geodesics aretime-like in the massive case, representing the motion of objects traveling
slower than the speed of light, and null, or light-like, in the case of (massless) particles
moving at the speed of light. They can be characterized by variational principles which can
be interpreted as extensions to General Relativity of the Fermat principle in classical optics.
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Some of them can be used to describe the so-calledgravitational lens effectthat occurs
in Astrophysics whenever multiple images of point-like sources (e.g. quasars) are observed
(cf. e.g. [22]). In mathematical terminology, a gravitational lensing situation can be modeled
in the following way. We consider a Lorentzian manifold(M, g) as a mathematical model
for the space–time, we fix a time-like curveγ as the worldline of a light source and a
point p as the event where the observation takes place. Now, the number of images seen
by the observer equals the number of future pointing light-like geodesics fromp to γ .
Whenever there are two or more such geodesics, we are in a gravitational lensing situation.
Alternatively, one could interpretp as an instantaneous point-like source of light andγ as
the worldline of a receiver. Since the two problems can be treated in the same way from a
mathematical point of view, we shall focus our attention only on this second case.

It should be remarked that different approaches to the mathematical modeling of the
gravitational lensing effect are possible. For instance, in [19–21], the authors use athin lens
approximation; in [10] also nonthin lenses are considered.

In a recent paper, Kovner has suggested a very general version of the Fermat principle to
study time-like and light-like geodesics (cf. [9]). Kovner’s principle, justified by plausible
arguments in [9] and rigorously proven by Perlick in [18] for the light-like case, can be stated
as follows. Among all future pointing curvesz : [0,1] →M joiningp andγ and satisfying
g(z)[ż, ż] ≡ a, with a ≤ 0 fixed, i.e., all possibilities to go fromp to γ at speed less than
(a < 0) or equal to (a = 0) the (vacuum) speed of light, the geodesics are characterized
as stationary points for thearrival time (defined using a smooth parameterization ofγ ). In
the light-like case (a = 0), this principle generalizes the Fermat’s principle for light rays
in classical optics.

In an absolutely similar fashion, one could give a time-reversed version of the principle,
by interpretingp as an instantaneous receiver andγ the worldline of a source. In this case,
the geodesics are characterized by stationarydeparture time.

The aim of this paper is twofold. In the first part we shall develop a Morse theory for
future pointing time-like geodesics with a prescribed parameterization (proportional to the
proper time) and joining a given event with a time-like curve in a time-oriented Lorentzian
manifold.

In the second part of the article, using a limit process, we shall prove the Morse relations
for future pointing light-like geodesic (light rays), giving a new and simpler proof with
respect to the ones of Giannoni et al. [6,7], where the existence of a smooth time function
was assumed. In this paper we shall only assume the existence of a time-orientation for the
Lorentzian manifold.

In order to state our results, we now give the basic definitions and we introduce the
notations needed for our setup.

Let (M, 〈·, ·〉) be a time oriented Lorentz manifold and letY be a smooth time-like vector
field giving the time orientation (we refer to [1,15] for the basic notions of Lorentzian geome-
try that will be used). We setm = dim(M); the physical interesting case is
m = 4.

Fix an eventp ∈M and a time-like curveγ : R→M. On the curveγ we shall make
the following assumptions:
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• γ is of classC2;
• γ is time-like and future pointing;
• γ is injective;
• γ (R) does not containp;
• γ (R) is not entirely contained inI+(p), thecausal futureof p.
We recall that the causal future of a pointp is defined as

I+(p)= { q ∈M|there exists a future pointing causal curve

z : [a, b] 7→Mwith z(a) = p andz(b) = q}. (1.1)

As customary, ifI ⊆ R is any interval, we will denote byH 1,2(I,Rn) the Sobolev space
of all absolutely continuous curvesz : I 7→ R

n having square integrable derivative onI .
Given any differentiable manifoldN , with n = dim(N), we defineH 1,2([0,1], N) as the
set of all absolutely continuous curvesz : [0,1] 7→ N such that for every local chart(V , ϕ)
onN , with ϕ : U 7→ R

n a diffeomorphism, and for every closed subintervalI ⊆ [0,1]
such thatz(I ) ⊂ V , it is ϕ ◦ z ∈ H 1,2(I,Rn) (cf. [16]).

It is not difficult to see that this definition ofH 1,2([0,1], N) may be given equivalently
in the following two ways:
• a curvez : [0,1] 7→ N belongs toH 1,2([0,1], N) if and only if there exists a finite

sequenceI1, . . . , Ik of closed subintervals of [0,1] and a finite number of chartsϕi :
Ui 7→ R

n onN , i = 1, . . . , k, such that
⋃k
i=1Ik = [0,1], z(Ii) ⊂ Ui , andϕi ◦ z ∈

H 1,2(Ii,R
n) for all i = 1, . . . , k;

• aC1-curvez : [0,1] 7→ N is inH 1,2([0,1], N) if and only if for one (hence for every)
Riemannian metricg(R) onN , the integral

∫ 1
0 g(R)(ż, ż) dt is finite.

A classical result of Global Analysis (see [17]) states thatH 1,2([0,1], N)has the structure of
an infinite dimensional manifold modeled on the Hilbert spaceH 1,2([0,1],Rn). Similarly,
one defines the Banach manifoldsHk,p([0,1], N), k ∈ N, 1 ≤ p ≤ +∞, modeled on
the Sobolev spacesHk,p([0,1],Rn). In particular, in this paper we will be concerned with
the manifoldsHk,p([0,1],M) andHk,p([0,1], TM), whereTM is the tangent bundle
ofM.

If g(R) is any given Riemannian metric onM, for 1 ≤ p ≤ +∞ we also define the
spacesLp([0,1], TM) as the set of functionsζ : [0,1] 7→ TM such that the real valued
functiong(R)(ζ, ζ )1/2 is inLp([0,1],R). It is easy to see that, by the compactness of [0,1],
the definition ofLp([0,1], TM) does not depend on the choice of a specific Riemannian
metricg(R).

The natural setting to study future pointing light rays joiningp andγ is the following
space:

L+
p,γ = { z : [0,1] →M|z ∈ H 1,2([0,1],M),

〈Y, ż〉< 0 for any s such thaṫz(s)exists and it is different from zero,

〈ż, ż〉 = 0 a.e., z(0) = p, z(1) ∈ γ (R)}.
Here theH 1,2-regularity is used because it is the simplest one if we want to give an infinite
dimensional approach to the Morse theory.
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Unfortunately,L+
p,γ is not aC1-submanifold ofH 1,2([0,1],M), but it only has a Lips-

chitz regularity. For this reason we shall approximate it by the family of smooth submanifolds
of H 1,2([0,1],M), parameterized by a positive numberε, given by

L+
p,γ,ε = { z : [0,1] 7→M|z ∈ H 1,2([0,1],M), 〈Y (z), ż〉 < 0 a.e.,

〈ż, ż〉 = −ε2 a.e., z(0) = p, z(1) ∈ γ (R)}.
To complete our variational framework we introduce thearrival time functionalτ which
assigns to each curve ending onγ the value of the parameter ofγ at the arrival point. The
functionalτ is defined on the manifold

Ω1,2
p,γ = {z : [0,1] →M|z ∈ H 1,2, z(0) = p, z(1) ∈ γ (R)}

as
τ(z) = γ−1(z(1)).

Observe thatτ is well defined becauseγ is injective.
Some relativistic versions of the Fermat principle have been already used (cf. e.g. [7]

and the references therein) to develop a Morse theory for light rays. However, the Morse
relations for time-like geodesics with prescribed parameterization has not been obtained yet.
Moreover, the results for light rays in [6,7] have been proven under the extra assumption
of stable causality forM, i.e., assuming the existence of a smooth global time function
T :M 7→ R onM, and using the following functional:

Q(z) =
∫ 1

0
〈ż,∇T 〉2 ds,

where∇T is the Lorentzian gradient ofT .
In spite of the analogy with the energy functional in Riemannian manifolds, the critical

points ofQ on the approximating manifoldsL+
p,γ,ε do not have a clear geometrical or

physical meaning; moreover, the Euler–Lagrange equations for the Lagrangian function of
Q are very complicated. This is one of the main reasons making the proof of Morse theory
in [7] quite involved.

In this paper, due to the use of the arrival time functionalτ on the manifoldsL+
p,γ,ε , we

first obtain the Morse relations for the time-like geodesics, then, using a limit process as
ε → 0, we extend the results to the case of light-like geodesics.

In order to avoid technical difficulties that could make not completely clear the advantages
of this new approach, we will consider only the case whereM is a manifold without bound-
ary. It is worthy to observe here that the techniques presented in this paper can be employed
also in the study of causal geodesics in manifolds having a causally convex boundary.

Before stating the main results of the present paper, let us recall the notions of conjugate
point along a geodesic and the notion of geometric index.

We denote byD the Levi-Civita connection of the metricg; moreover, letR be the
curvature tensorof g, defined with the following sign convention:

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z,

whereX, Y,Z are vector fields onM.
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Definition 1.1. Let z : [0,1] →M be a geodesic. The pointz(s), s ∈]0,1], is said to be
conjugateto z(0) alongz if there exists a nonzero smooth vector fieldζ alongz|[0,s] (called
Jacobi field) such that

D2
s ζ + R(ζ, ż)ż = 0, (1.2)

and satisfying the boundary condition

ζ(0) = 0, ζ(s) = 0. (1.3)

Themultiplicity of the conjugate pointz(s) is the maximal number of linearly independent
Jacobi fields satisfying (1.3). Thegeometric indexµ(z) of the geodesicz is the number of
pointsz(s) conjugate toz(0) alongz, counted with their multiplicity.

We shall prove that the functionalτ onL+
p,γ,ε is of classC2. Let z be a critical point ofτ

onL+
p,γ,ε . The Morse indexm(z, τ) is defined as the maximal dimension of a subspace of

TzL+
p,γ,ε (the tangent space toL+

p,γ,ε atz), where the Hessian ofτ atz is negative definite.
The first result concerns the Fermat principle inL+

p,γ,ε .

Theorem 1.2. A curvez is a critical point of τ on L+
p,γ,ε if and only if z is a future

pointing time-like geodesic joiningp with γ such that〈ż, ż〉 = −ε2. Moreover, ifz(1) is
nonconjugate top = z(0) alongz, thenm(z, τ) = µ(z).

To write Morse relations forτ in L+
p,γ,ε (whereε > 0 is fixed), we need to assume that

(M, 〈·, ·〉) is strongly causal. This means that for any pointq ∈ M, there is no future
pointing causal curves starting arbitrarily close toq, leaving some fixed neighborhood ofp
and returning arbitrarily close toq (cf. [1,15]).

Moreover, we need to recall some topological definitions. LetX be a topological space,K
an algebraic field, for anyq ∈ Nwe denote byHq(X,K) theqth homology group ofXwith
coefficient inK (cf. [23]). SinceK is a field,Hq(X,K) is a vector space. The dimension
βq(X,K) of Hq(X,K) is called theq th Betti number ofX (with coefficients inK). Finally
the Poincaré polynomial ofX is the formal series with coefficients inN ∪ {+∞} defined
as

Pr (X,K) =
∞∑
q=0

βq(X,K)r
q .

Theorem 1.3. Let (M, 〈·, ·〉) be strongly causal,γ a curve inM satisfying(1.1)and
1. L+

p,γ,ε 6= ∅;
2. for any geodesicz ∈ L+

p,γ,ε , z(1) is nonconjugate toz(0) = p;
3. the functionalτ is pseudo-coercive onL+

p,γ,ε , namely: for anyc ∈ R, there existsKc
compact subset ofM such thatz([0,1]) ⊂ Kc for any z ∈ L+

p,γ,ε satisfyingτ(z)
≤ c.

Then, for any coefficient fieldK, there exists a formal seriesS(r) with coefficients inN ∪
{+∞} such that
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z∈G+

p,γ,ε

rµ(z) = Pr (L+
p,γ,ε;K)+ (1 + r)S(r). (1.4)

HereG+
p,γ,ε is the set of the time-like geodesics inL+

p,γ,ε .

Remark 1.4. The set of assumptions(1.1) on the curveγ imply immediately thatτ is
bounded from below inL+

p,γ,ε .

Taking the limit asε → 0, we obtain also the Morse relations for light rays.

Theorem 1.5. Let (M, 〈·, ·〉) be strongly causal,γ a curve satisfying(1.1)and
1. L+

p,γ 6= ∅;
2. for any geodesicz ∈ L+

p,γ , z(1) is nonconjugate toz(0) = p;
3. the functionalτ is pseudo-coercive onL+

p,γ , namely, for anyc ∈ R, there existsKc
compact subset ofM such thatz([0,1]) ⊂ Kc for anyz ∈ L+

p,γ satisfyingτ(z) ≤ c.
Then, for any coefficient fieldK, there exists a formal seriesS(r) with coefficients inN ∪
{+∞} such that∑

z∈G+
p,γ

rµ(z) = Pr (L+
p,γ ;K)+ (1 + r)S(r). (1.5)

HereG+
p,γ is the set of the light-like geodesics inL+

p,γ .

For the limit process the following results are crucial.

Theorem 1.6. Assume that(M, 〈·, ·〉) is strongly causal andτ is pseudo-coercive onL+
p,γ .

Letc ∈ R, (εm)m∈N any sequence inR+ withεm → 0,and(zm)m∈N a sequence of (time-like)
geodesics inL+

p,γ,εm
, satisfyingτ(zm) ≤ c for allm ∈ N. Then,zm has a subsequence which

is convergent (with respect to theC2-norm)to a future pointing light-like geodesic joining
p andγ .

Theorem 1.7. Let (zm)m∈N be a sequence of time-like geodesics convergent with respect
to theC2 -norm to a light-like geodesicz such thatz(0) andz(1) are nonconjugate. Then

µ(zm) = µ(z) for anym sufficiently large.

Theorem 1.6 will be proved in Section 6. The proof of Theorem 1.7 involves the notion of
Maslovindex for a semi-Riemannian geodesic (see [8,13]). For causal Lorentzian geodesics,
the Maslov index coincides with the geometric index of the geodesic, while in the general
case it is given by a sortalgebraiccount of the multiplicities of the conjugate points along
the geodesic. The Maslov index can be characterized as the intersection number between a
curve and a codimension one subvariety of theLagrangian–Grassmannianof a symplectic
space, and thus it is stable by homotopies. The stability of the geometric index can be proven
in more general contexts; details of the proof may be found in [13].

The Morse relations provide a global description of the multiple image effect for point-like
sources. Some information about the physical phenomenon can be obtained directly using
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them: for instance the information about the odd number of images predicted by astrophysi-
cists (cf. [7, Theorem 1.16]).

2. Existence of minimizers

Fix ε > 0. In order to develop a Morse theory onL+
p,γ,ε using the functionalτ , we should

need the Palais–Smale condition forτ onL+
p,γ,ε . Namely, we should need that any sequence

(zm)m∈N such thatτ(zm)m∈N is uniformly bounded with respect tom and dτ(zm) → 0 as
m → ∞ had a converging subsequence inL+

p,γ,ε . Unfortunately,τ has homogeneity 1 as a
length functional on a Riemannian manifold (as it can be proved using local coordinates).
Therefore, the natural space to study the Palais–Smale condition is the space

L̂+
p,γ,ε = { z ∈ H 1,1([0,1],M)|〈ż, ż〉

= −ε2 a.e., 〈Y (z), ż〉 < 0 a.e., z(0) = p, z(1) ∈ γ (R)}, (2.1)

whereH 1,1([0,1],M) denotes the space of the absolutely continuous curves (on any local
chart) whose first derivative is integrable.

But to develop a Morse theory it is really more convenient to work on the Hilbert manifold
L+
p,γ,ε . For this reason we shall use a curve shortening procedure working on the curve space
L+
p,γ,ε . The spaceL+

p,γ,ε is equipped with a structure of infinite dimensional manifold and
its tangent space at a pointz is given by

TzL
+
p,γ,ε = {ζ ∈ H 1,2([0,1], TM) : ζ(0) = 0, ζ(1)‖γ̇ (z(1)), 〈z,Dsζ 〉

= 0 a.e., ζ(s) ∈ Tz(s)M for any s ∈ [0,1]}, (2.2)

whereTM is the tangent bundle ofM (cf. [6] replacing there∇T by Y ).
We introduce a Riemannian structure onM setting for anyp ∈M andζ ∈ TpM,

〈ζ, ζ 〉(R) = 〈ζ, ζ 〉 − 2
〈ζ, Y (z)〉2

〈Y (z), Y (z)〉 . (2.3)

Thewrong way Schwartz’s inequality(cf. [15]) shows that (2.3) is a Riemannian structure
onM. We shall denote bydR the distance function induced by (2.3).

A Riemannian structure can be introduced on the manifoldL+
p,γ,ε , setting for anyz ∈

L+
p,γ,ε andζ ∈ TzL+

p,γ,ε ,

〈ζ, ζ 〉1 =
∫ 1

0
〈Dsζ,Dsζ 〉(R) ds. (2.4)

The proof is formally the same as in [6], where the existence of a time function is assumed.
Now, for any [a, b] ⊂ [0,1], −∞ < α < β < +∞, q ∈ M andδ : ] α, β[ → M

smooth time-like curve, we set

L+
q,δ,ε([a, b]) = { z ∈ H 1,2([a, b],M : z(a) = q, z(b) ∈ δ(]α, β[),

〈ż, ż〉 = −ε2 a.e., 〈ż, Y (z)〉 < 0 a.e.}. (2.5)

Note thatδ is injective becauseM is strongly causal.
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The main result of this section is the following result on the existence and the uniqueness
of minimizers of the arrival timeτ between a point and a “sufficiently close” integral curve
δ of the vector fieldY (obviouslyδ is a time-like curve).

Theorem 2.1. Fix −∞ < α < β < +∞. For anyq ∈M there exists a positive number
ρ(q) having the following property: for any integral curveδ :]α, β[→ M of Y such that
dR(q, δ((α+β)/2) ≤ ρ(q), and for any interval[a, b] such that0< |b−a| ≤ ρ(q), there
exists one and only onez ∈ L+

q,δ,ε([a, b])which minimizes the arrival time onL+
q,δ,ε([a, b]).

Note that in the statement of theorem 2.1, the arrival time is given byτ(z) = δ−1(z(b)).
Set

TzL̂
+
q,δ,ε([a, b])={ ζ ∈ H 1,1([a, b], TM : ζ(a)=0, ζ(b)‖δ̇(z(b)), 〈z,Dsζ 〉 = 0 a.e.,

ζ(s) ∈ Tz(s)M, for anys ∈ [0,1]}. (2.6)

Note that the spaceTzL̂
+
q,δ,ε([a, b]) must be considered as a tangent space, but only in a

“Gateaux” sense. This is what we need to prove Theorem 2.1.
In order to prove Theorem 2.1, some preliminary results are needed. The first says

that τ satisfies the Palais–Smale condition with respect to theadmissible variationsin
TzL̂

+
q,δ,ε([a, b]) and with respect to the “Finsler” structure onL̂+

q,δ,ε([a, b]) defined in the

following way: for anyz ∈ L̂+
q,δ,ε([a, b]) and for anyζ ∈ TzL̂+

q,δ,ε([a, b]), we set

‖ζ‖1,a,b ≡ ‖ζ‖ =
∫ b

a

(〈DR
s ζ,D

R
s ζ 〉(R) + 〈ζ, ζ 〉(R))1/2 ds, (2.7)

whereDR
s denotes the Levi-Civita connection with respect to the Riemannian metric (2.3).

Remark 2.2. Note that sinceδ is a curve of classC2 andτ is characterized by the relation
δ(τ (z)) = z(b), we have thatτ is a functional of classC2 on the space of the curves
parameterized on the interval[a, b] and joiningq andδ. Moreover, its differential along a
directionζ is given by

δ̇(τ (z))dτ(z)[ζ ] = ζ(b).

Therefore

dτ(z)[ζ ] = 〈δ̇(τ (z)), ζ(b)〉
〈δ̇(τ (z)), δ̇(τ (z))〉 . (2.8)

Remark 2.3. In the rest of the paper the parallel transport ofδ̇(z(b)) alongz will be often
used, namely the solutionU(z) of the Cauchy problem

DsU(z) = 0, U(b) = δ̇(τ (z)), (2.9)

whereDs is the covariant derivative alongz(s). Note that ifz has aH 1,r -regularity, then
alsoU(z) is of classH 1,r (r ∈ [1,∞]).
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Since the parallel transport is an isometry, the vector fieldU(z) alongz is time-like and for
anys ∈ [a, b],

〈δ̇(τ (z)), δ̇(τ (z))〉 = 〈U(z)(s), U(z)(s)〉.
Moreover, any vector fieldζ alongz such thatζ(a) = 0, ζ(b) = 0 can be projected on
TzL̂

+
q,δ,ε([a, b]) usingU(z). Indeed, set

Vζ (s) = ζ(s)− µ(s)U(z)(s), µ(s) =
∫ s

a

〈Dsζ, ż〉
〈U(z), ż〉dr. (2.10)

ClearlyVζ ∈ TzL̂+
q,δ,ε([a, b]), and by (2.8),

dτ(z)[Vζ ] = dτ(z)[ζ − µU(z)] = −µ(b) = −
∫ b

a

〈Dsζ, ż〉
〈U(z), ż〉dr. (2.11)

Note that zero-homogeneity of the map

θ → θ

〈U(z), θ〉
shows that the vector field〈U(z), ż〉−1ż is uniformly bounded, and thereforeµ(s) ∈
H 1,1([a, b],R).

Proposition 2.4. Let (zm)m∈N be a sequence of curves of classC1 and such thatzm ∈
L̂+
q,δ,ε([a, b]) for anym ∈ N. Assume that

1. τ(zm) → c ∈]α, β[, asm → ∞, where]α, β[ is the interval whereδ is defined;
2. sup{|dτ(zm)[ζ ]| : ζ ∈ TzmL̂+

q,δ,ε([a, b]), ‖ζ‖a,b,1 ≤ 1} → 0 asm → ∞.
Then the sequence(zm)m∈N contains a subsequence converging to a curvez with respect
to theC1 -norm.

In order to prove Proposition 2.4, the following remarks and lemmas are needed.

Remark 2.5. It is not difficult to verify that for anyz0 ∈ M there exists a local chart
(U, ϕ) ofM containingz0 such thatϕ(U) = V × I , whereV is a convex open subset of
R
n, n = m− 1, I is an open interval,

ϕ(U)=
{
(x, t) : x = (x1, . . . , xn), the distribution generated by the

∂

∂xi
’s is space-like and

∂

∂t
= Y

}
,

and the Lorentzian metricg onϕ(U) can be written as

ds2 = 〈α(x, t)ξ, ξ〉0 + 2〈Γ (x, t), ξ〉0θ − β(x, t)θ2, (2.12)

where〈·, ·〉0 is a Riemann structure onV ,α(x, t) is a positive linear operator,Γ is a smooth
vector field, β(x, t) is a smooth positive scalar field, and(ξ, θ) ∈ Rn × R.
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Lemma 2.6. Assume thatτ is pseudo-coercive on̂L+
p,γ,ε (or equivalently onL+

p,γ,ε). Then,
for anyc ∈ R there existsD(c) > 0 such that

τ(z) ≤ c ⇒
∫ 1

0

√
〈ż, ż〉R ds ≤ D(c).

Proof. Assume by contradiction that there exists a sequence(zm)m∈N in L̂+
p,γ,ε such that

τ(zm) ≤ c for anym ∈ N and∫ 1

0

√
〈żm, żm〉R ds → +∞. (2.13)

Set ẑm(s) = zm(s/λm), whereλm = sup{〈żm, żm〉1/2
R : s ∈ [0,1]}. By pseudo-coercivity

(and Ascoli–Arzelá’s theorem), up to passing to a subsequence there exists a curvez :
R

+ →M such that

ẑm → z uniformly on the compact subsets ofR+. (2.14)

Now fix r > 0 and consider the interval [0, r]. Suppose thatz(r + 1) does not intersect
z([0, r]). (SinceM is strongly causal and anyẑm is causal, this means thatz is not constant
on the interval [r, r+1].) The strong causality ofM implies (arguing by contradiction) that
z(s) is uniformly far fromz([0, r]) on [r+1,+∞[. Therefore, we can use a countable set of
local charts(Uj , ϕj ), j = 1, . . . , k, as in Remark 2.5 and thet-coordinate on anyϕj (Uj )
to construct, without ambiguity, a smooth mapT on a relatively compact neighborhoodU
of z(R+) such that for anyq ∈ U ,

〈∇T (q),∇T (q)〉 < 0 and 〈∇T (q), Y (q)〉 < 0.

Now anyzm is time-like and〈Y (zm), żm〉 < 0 form and for anys ∈ [0,1]. Then, for any
m sufficiently large,〈∇T (zm), żm〉 > 0 for anys ∈ [0,1]. Moreover, sinceτ(zm) ≤ c, we
have (unless to consider a subsequence) that

T (zm(1)) is bounded.

Now

T (zm(1))− T (p) = T (zm(1))− T (0) =
∫ 1

0
〈∇T (zm), żm〉 ds, (2.15)

while, by (2.3) and the choice of the orientation of∇T (z), there existsν0 such that

〈∇T (zm), żm〉 ≥ ν0
√〈żm, żm〉(R) (2.16)

for anys ∈ [0,1] andm sufficiently large (recall thatzm ∈ L̂+
p,γ,ε).

SinceT (zm(1)) is bounded, combining (2.14) and (2.15) gives the boundedness of∫ 1

0

√〈żm, żm〉(R) ds,

in contradiction with (2.13). �
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Proof of Proposition 2.4. The proof will be carried out assuming [a, b] = [0,1]. Since
(zm)m∈N is a Palais–Smale sequence,

lim
m→∞(sup{‖τ ′(zm)[ζ ]‖1 : ζ ∈ TzmL̂+

p,γ,ε, ‖ζ‖1 ≤ 1}) = 0.

By assumptions (i) and pseudo-coercivity, there existsK compact subset ofM such that

zm([0,1]) ⊂ K for anym.

Moreover, well-known results on dual Sobolev spaces (cf. [2]) imply that

τ ′(zm)[ζ ] =
∫ 1

0
〈αm,DR

s ζ 〉(R) ds +
∫ 1

0
〈βm, ζ 〉(R) ds, (2.17)

whereαm andβm areL∞-vector fields alongzm and

αm → 0, βm → 0 uniformly.

Now

DR
s ζ −Dsζ = Γ (zm)[ż, ζ ],

whereΓ (zm) is a bilinear map, whose components are smooth functions ofzm. Then there
exists a vector field̂βm alongzm (of classH 1,1) and a bilinear mapB(zm)[·, ·] such that
β̂m → 0 uniformly and

τ ′(zm)[ζ ] =
∫ 1

0
〈αm,Dsζ 〉 ds +

∫ 1

0
〈B(zm)[αm, żm], ζ 〉 ds +

∫ 1

0
〈β̂m, ζ 〉 ds. (2.18)

Then, ifµ andU(zm) are as in (2.9) and (2.10), withζ replaced byW , for everyW ∈
C∞

0 ([0,1], TM) such thatW(s) ∈ Tzm(s)M for anys, we have

τ ′(zm)[W − µU(zm)] =
∫ 1

0
〈αm,Ds(W − µU(zm))〉 ds

+
∫ 1

0
〈B(zm)[αm, żm] + β̂m,W − µU(zm)〉 ds.

SinceDsU(zm) = 0 and

µ(s) =
∫ s

0

〈DsW, żm〉
〈U(zm), żm〉ds,

by (2.10) we have

−
∫ 1

0

〈
DsW,

żm

〈U(zm), żm〉
〉

ds

=
∫ 1

0

〈
DsW − 〈DsW, żm〉

〈U(zm), żm〉U(zm), αm
〉

ds +
∫ 1

0
〈B(zm)[αm, żm] + β̂m,W 〉 ds

−
∫ 1

0

∫ s

0

( 〈DσW, żm〉
〈U(zm), żm〉dσ

)
〈B(zm)[αm, żm]β̂m, U(zm)〉 ds.
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Now, sincezm([0,1]) ⊂ K for all m ∈ N,

U(zm)and
żm

〈U(zm), żm〉 are uniformly bounded.

Moreover, by Lemma 2.6 the sequence(żm)m∈N is bounded inL1([0,1], TM). Sinceαm
andβ̂m → 0 uniformly, the covariant primitive∫ s

0
(B(zm)[αm, żm] + β̂m)dσ

tends uniformly to 0. Therefore, an integration by parts shows the existence of a vector field
Am alongzm such thatAm tends uniformly to 0 and∫ 1

0

〈
DsW,

żm

〈U(zm), żm〉
〉

ds +
∫ 1

0
〈DsW,Am〉 ds = 0

for any vector fieldW ∈ C∞
0 ([0,1], TM) such thatW(s) ∈ Tzm(s)M for anys.

The arbitrariness ofW gives the existence of a vector fieldZm ∈ TzmL̂+
q,δ,ε such that

DsZm = 0 and
żm

〈U(zm), żm〉 + Am = Zm. (2.19)

SinceDsZm = 0, the functionCm = 〈Zm,Zm〉 is constant. Moreover, since〈żm, żm〉 =
−ε2, we obtain the existence of a sequence of functionsÂm such thatÂm → 0 uniformly
and

Cm = −ε2

〈U(zm), żm〉 + Âm. (2.20)

We show now that the functions〈U(zm), żm〉 are bounded uniformly with respect tom ∈ N
ands ∈ [0,1]. Assume by contradiction that there exists a sequence(sm)m∈N such that
〈U(zm(sm)), żm(sm)〉 → +∞. By (2.20),Cm → 0 and

−ε2

〈U(zm), żm〉 → 0 uniformly.

This means that

|〈U(zm), żm〉| → +∞ uniformly. (2.21)

SinceU(zm) is an uniformly bounded sequence of time-like vector fields along the curve
zm and żm is time-like,‖żm(s)‖R → +∞ uniformly, in contradiction with Lemma 2.6.
Then〈U(zm), żm〉 is uniformly bounded with respect tom ∈ N ands ∈ [0,1], and since
U(zm) andżm are time-like, there exists a positive constantD such that

‖żm(s)‖R ≤ D, ∀n ∈ N, ∀s ∈ [0,1]. (2.22)

By the Ascoli–Arzelá theorem, up to subsequences, we have that the sequence(zm)m∈N is
uniformly convergent.
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Now the sequence(Cm)m∈N converges (up to subsequences) toC ∈ R. Therefore, the
sequence(〈U(zm), żm〉)m∈N is convergent inL∞.

Now 〈Zm,Zm〉 is bounded,zm is uniformly convergent andDsZm = 0. Then using
(2.22) and the Ascoli–Arzelá theorem gives that the sequenceZm has a subsequence which
is uniformly convergent. By (2.19) there exists a subsequence(żmk )m∈N which converges
uniformly. �

The manifoldL+
p,γ,ε is only of classC1 (cf. [6]). However, the restriction of the arrival

time τ onL+
p,γ,ε is of classC2. This fact is essential to develop a Morse theory onL+

p,γ,ε

(in particular for the study of the behavior ofτ nearby its critical point).
More precisely consider theC1-bundleWε over the manifoldL+

p,γ,ε , whose fiberWε(z)

is given by the whole tangent spaceTzΩ
1,2
p,γ , z ∈ L+

p,γ,ε , namely

Wε(z) = {(z, ζ ) : z ∈ L+
p,γ,ε, ζ ∈ TzΩ1,2

p,γ }.
Moreover we set

W0
ε = {(z, ζ ) ∈ Wε : ζ(1) = 0}.

We are thinking ofWε as a regular extension of tangent bundleTL+
p,γ,ε . They are related

by the bundle mapV : Wε → TL+
p,γ,ε ,

V (z, ζ ) = (z, Vζ ),

whereVζ is defined by (2.10).

Remark 2.7. It is immediately checked thatV is a continuous map and it is aC1-map
considered as a map fromWε into itself(with image inTL+

p,γ,ε). Moreover, its restriction
to the tangent bundleTL+

p,γ,ε is the identity map and for everyz ∈ L+
p,γ,ε , V is surjective

fromW0
ε to TL+

p,γ,ε .

By Remark 2.7, the following proposition easily follows.

Proposition 2.8. The functionalτ is of classC2 onL+
p,γ,ε in the sense that the map

(z, ζ ) → τ ′(z)[Vζ ]

is of classC1 onWε .

Corollary 2.9. For any local chart of the manifoldL+
p,γ,ε , the restriction ofτ to the domain

of the chart is of classC2.

We prove now the time-like version of the Fermat principle for curves of classH 1,1. It
will be fundamental to prove Theorem 2.1.

Theorem 2.10. A curvez is a critical point ofτ onL̂+
p,γ,ε in the sense thatdτ(z)[ζ ] = 0 for

anyζ ∈ TzL̂+
p,γ,ε if and only ifz is a (smooth) geodesic.
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Proof. LetU(z) be the vector field alongz given by (2.9). By (2.10) and (2.11),z is a critical
point of τ if and only if for any vector fieldW ∈ TzH 1,1([0,1],M) such thatW(0) = 0,
W(1) = 0,∫ 1

0

〈DsW, ż〉
〈U(z), ż〉 ds = 0. (2.23)

Now, assume thatz is a geodesic. Then〈U(z), ż〉 is a constant sinceDsU = 0 andDsż = 0.
Such a constant is nonzero becauseU(z) andż are both time-like.

Moreover, ifz is a geodesic, integration by parts gives∫ 1

0
〈DsW, ż〉 ds = 0

for all W ∈ H 1,1([0,1], TM), with W(s) ∈ Tz(s)M for all s, and such thatW(0) = 0,
W(1) = 0. Hence, (2.23) holds.

Conversely, assume that (2.23) holds. Then, setting

λ(s) = 1

〈U(z), ż〉 ,

we have by an usual boot-strap argument that the vector fieldλ(z)ż is of classC1. Moreover,
Ds(λż) = 0. Then

〈λż, λż〉 = −λ2ε2 is constant,

showing thatλ is constant (and nonzero). ThenDsż = 0. �

Remark 2.11. By(2.10) and (2.11),z is a critical point ofτ if and only ifµ(1) = 0, for any
vector fieldW ∈ TzH

1,1([0,1], TM) alongz, withW(0) = 0,W(1) = 0. Therefore, by
(2.11)and Remark2.7,z is a critical point ofτ if and only ifζ(1) = 0, for anyζ ∈ TzL̂+

p,γ,ε .

We give now the statement of the well-knownEkeland’s variational principle(cf. [4]).
It will be used in the proof of Theorem 2.1.

Theorem 2.12. Let (X, d) be a complete metric space andE : X → R ∪ {+∞} a lower
semicontinuous functional, bounded from below,E 6≡ +∞.

Then, for anyν, µ > 0 and for anyu ∈ X such that

E(u) ≤ inf
X
E + µ,

there exists an elementv ∈ X strictly minimizing the functional

Eu(w) = E(w)+ ν

µ
d(u,w).

Moreover, we have

E(v) ≤ E(u) and d(u, v) ≤ µ.

We are finally ready to prove Theorem 2.1.
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Proof of Theorem 2.1. Fix q ∈M and choose a local chart(U, ϕ) as in Remark 2.5 and
includingq. Then we can reduce us to work on the spaceV × I , whereV is a bounded
open subset ofRn, n = m − 1, I = ] − λ0, λ0[ is an open interval ofR, q = (q0,0) ∈
V × I and the metricg satisfies (2.12). Sinceδ is an integral curve of the vector fieldY , if
dR(q, δ((α + β)/2)) is sufficiently small, we can assume that

δ(s) = (qδ, s), ∀s ∈ ] − λ0, λ0[ ⊂ ]α, β[,

whereqδ ∈ V anddR(q0, qδ) → 0 asdR(q, δ((α + β)/2)) → 0.
If z ∈ L+

q,δ,ε is a curve with values inU , unless we consider the chartϕ(U) = V × I ,
z = (x, t), x(a) = q, x(b) = qδ andt satisfies the Cauchy problem

ṫ =
〈
Γ

β
(x, t), ẋ

〉
+
√〈
α

β
(x, t)ẋ, ẋ

〉
+
〈
Γ

β
(x, t), ẋ

〉2
+ ε2, t (a) = 0 (2.24)

Moreover,

τ(z)= tx(b)

=
∫ b

a

〈
Γ

β
(x, tx), ẋ

〉
+
√〈
α

β
(x, tx)ẋ, ẋ

〉
+
〈
Γ

β
(x, tx), ẋ

〉2
+ ε2 ds, (2.25)

wheretx is the solution of (2.24). Using as a test function the chord joiningq0 with qδ in
the interval [a, b], we see that

inf
L+
q,δ,ε

τ → 0 as |b − a| → 0 and dR(q0, qδ) → 0. (2.26)

Therefore, if|b − a| anddR(q0, qδ) are sufficiently small,

any minimizing sequence(zm)m∈N for τ in L+
q,δ,ε is contained inϕ(U). (2.27)

The Cauchy problem (2.24) can obviously be written as

ṫ = 〈A(x, t), ẋ〉 +
√

〈L(x, t)ẋ, ẋ〉2 + ε2, t (0) = 0,

whereL is a smooth definite operator andA is a smooth vector field. Using the above position
and the Gronwall lemma shows that the mapΦ : H 1,1([a, b],Rn) → L1([0,1],R) such
thatΦ(x) is the unique solution of (2.25) (whenever it is defined in all the interval [a, b])
is a continuous map (cf. also [5]).

We claim that for anyζ ∈ C1([0,1],Rn),

Φ is differentiable along the directionζ. (2.28)

Towards this goal consider the map

G(x, t) = ṫ − 〈A(x, t), ẋ〉 −
√

〈L(x, t)ẋ, ẋ〉2 + ε2.
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Fix ζ of classC1.G(x,Φ(x)) = 0 and for anyλ ∈ R,G(x + λζ,Φ(x + λζ )) = 0. Since
ζ is of classC1, straightforward computations shows that there exists

lim
λ→0

G(x + λζ, t)−G(x, t)

λ
= ∂G

∂x
(x, t)[ζ ] uniformly in t

with respect to theL1-norm, and

∂G

∂x
(x + σλζ,Φ(x + λζ ))[ζ ] → ∂G

∂x
(x,Φ(x))[ζ ] in L1

asλ → 0 uniformly onσ ∈ [0,1].
Moreover, for anyθ ∈ H 1,1([0,1],R),

∂G

∂t
(x, t)[θ ] = θ̇ −

〈
∂A

∂t
(x, t), ẋ

〉
θ − 1

2
√

〈〈L(x, t)ẋ, ẋ〉 + ε2〉

〈
∂L

∂t
(x, t)ẋ, ẋ

〉
θ.

This allows to show that the map

∂G

∂t
: H 1,1([0,1],R) → L1([0,1],R)

is invertible (the inverse can be evaluated solving a linear ordinary differential equation) and[
∂G

∂t
(x,Φ(x)+ σ(Φ(x + λζ )−Φ(x)))

]−1

→
[
∂G

∂t
(x,Φ(x))

]−1

inH 1,1([0,1],R) (uniformly with respect toσ , becauseΦ(x+λζ ) → Φ(x) inL∞([0,1],R).
Now, sinceG(x,Φ(x)) = 0 andG(x + λζ,Φ(x + λζ )) = 0, applying the Lagrange

theorem we obtain

0= ∂G

∂x
(x + σ1λζ,Φ(x + λζ ))[λζ ] + ∂G

∂t
(x,Φ(x)+ σ2(Φ(x + λζ )

−Φ(x)))[Φ(x + λζ )−Φ(x)].

Dividing by λ and passing to the limit asλ → 0 gives (2.28).
Take a sequence(νm)m∈N of positive numbers such thatνm → 0. By virtue of (2.27), for

anym ∈ N we can choose a curvexm with support contained inV such that

τ(xm) ≤ inf
L+
q,δ,ε

τ + ν2
m.

In Theorem 2.12 chooseν = ν2
m, µ = νm andu = xm. SinceV is relatively compact, by

(2.27) we can assume to be on a complete metric space. So, by applying Theorem 2.12 we
find a pointym satisfying

τ(ym) ≤ τ(ym + w)+ νm‖w‖1 (2.29)

for anyw ∈ H 1,1([a, b], V ), and therefore for anyw ∈ C1([a, b], V ). Now by a den-
sity argument,ym can be chosen of classC1. Then, by the arbitrariness ofw, sinceτ is
differentiable (inH 1,1) along the directions of classC1, we deduce that

|dτ(ym)[ζ ]| ≤ εm → 0 (2.30)

for anyζ of classC1 such that‖ζ‖1 ≤ 1.
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Indeed, takingw = λζ in (2.28) we have

τ(ym)− τ(ym + λζ )

|λ|‖ζ‖1
= τ(ym)− τ(ym + λζ )

|λ| ≤ εm,

from which we deduce (2.30) sendingλ → 0 (first choosingλ > 0 and thenλ < 0). Note
thatym is a minimizing sequence (by Theorem 2.12).

Now by the uniqueness of the related Cauchy problems, we see that

{(ζ,dΦ(ym)ζ ) : ζ ∈ C1([0,1],Rn)} = TymL̂
+
q,δ,ε ∩ C1([0,1], TM).

Then due to the density ofC1 inH 1,1 we see that the sequence(ym,Φ(ym))m∈N is a mini-
mizing sequence forτ satisfying the assumptions of Proposition 2.4. Then by Proposition
2.4, there exists a subsequence of(ym)m∈N convergent to a curvey with respect to the
C1-topology. Then(y,Φ(y)) is aC1-curve minimizingτ on L̂+

q,δ,ε . Finally, by Theorem
2.10 we obtain that(y,Φ(y)) is a geodesic, while the uniqueness of the minimizer comes
from the local invertibility of the exponential map. �

Remark 2.13. Working in local coordinates shows immediately that for any fixed neigh-
borhoodUq of q, there exists a positive numberρq such that the minimal geodesic forτ on
L+
q,δ,ε([a, b]) is in Uq if

dR

(
q, δ

(
α + β

2

))
≤ ρ(q) and |b − a| ≤ ρ(q).

3. A shortening method forτττ onL+
q,γ,εL+
q,γ,εL+
q,γ,ε

In this section we shall introduce a shortening flow for the functionalτ(z). Such a
flow will be used to get the deformations for the sublevels ofτ (needed to develop a
Morse theory) when we are far from the critical points ofτ , i.e., time-like geo-
desics.

To construct the shortening flow we shall use the same ideas as in [14], adapting them to
our case. Note that here we cannot use the same finite dimensional approach nearby critical
curves (used in [14] for Riemannian geodesics) because we are not working with fixed point
boundary conditions.

The shortening procedure, which is illustrated by five pictures appearing at the end of
the paper, is constructed in the following way.

Fix c > inf {τ(z), z ∈ L+
p,γ,ε} and considerD(c) as in Lemma 2.6. LetKc be a compact

subset ofM including all the curvesz ∈ L+
q,γ,ε such thatτ(z) ≤ c.

Let ρ∗(c) > 0 be such that Theorem 2.1 holds withρ(q) replaced byρ∗(c) for any
q ∈ Kc. TakeN = N(c) such that

1

N
≤ ρ∗(c),

D(c)

N
≤ ρ∗(c).
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Fig. 1.

Choose a partition{0 = s0 < s1 < · · · < sN−1 < sN = 1} of [0,1] such that for any
i ∈ {1, . . . , N},

si − si−1 = 1

N
.

For anyz ∈ τ c ∩L+
p,γ,ε , chooseN + 1 pointsz0, z1, . . . , zN onz([0,1]) such thatz(0) =

p, zN = z(1) anddR(zi, zi−1) = l(z)/N , for anyi ∈ {1, . . . , N}, wherel(z) denotes the
length ofz with respect to the Riemannian structure (2.3) (see Fig. 1).

Denote byγi (i = 1, . . . , N) the maximal integral curve ofW such thatγi(0) = zi (see
Fig. 2). Observe thatγN(s) = γ (s + τ(z)) for all s.

Letw1 be the geodesic minimizingτ onL+
p,γ1,ε

([s0, s1]) (recall thatz0 = p ands0 = 0),
w2 the light-like geodesic minimizingτ onL+

w1(s1),γ2,ε
([s1, s2]), and so on (see Fig. 3).

In Figs. 3–5 the pointswi(si) are denoted bywi . Note thatwi(si) is located “under”
zi . This can be seen under a comparison theorem in ordinary differential equations using
the “spatial coordinate” ofz to compare the solutions of (2.24) having initial datazi−1 and
wi−1(si−1), respectively, and recalling thatwi is a minimizer. Note also that the numberN
can be chosen large enough so thatdR(wi(si), zi+1) ≤ ρ∗(c) for anyi = 1, . . . , N −1 and
for anyz ∈ τ c.

Remark 3.1. Let K = K(c) be a compact subset ofM containing the images of the
curves of the curvesz ∈ L+

p,γ,ε with τ(z) ≤ c. By compactness, K(c) can be covered
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Fig. 2.

by a finite family(Uj ) as in Remark2.5, and the Lorentzian metricg is described by
(2.12).

Moreover,N can be chosen so large thatz([si−1, si ]) and the minimizer ofτ on
L+
wi−1(si−1),γi ,ε

([si−1, si ]) are contained in someUj .

With the notation of Remark 2.5, for any future pointing curvez with image contained in
someUj , the condition〈ż, ż〉 = −ε2 holds if and only if

ṫ =
〈
Γj

βj
(x, t), ẋ

〉
0
+
√〈
αj

βj
(x, t), ẋ, ẋ

〉
0
+
〈
Γj

βj
(x, t), ẋ

〉2
0
+ ε2. (3.1)

Moreover, anyγi is an integral curve ofW , so, inUj , it has the forms 7→ (xj , tj + s) if
zj = (xj , tj ).

Note thatL+
p,γ1,ε

([s0, s1]) is nonempty since it contains the restrictionz|[s0,s1] .
Now, using elementary comparison theorems for ordinary differential equations allow to

deduce that also any spaceL+
wi−1(si−1),γi ,ε

([si−1, si ]) is nonempty for anyi ∈
{2, . . . , N}.

Note also that ifη1 is the curve defined by settingη1([si−1, si ]) = wi , thenτ(η1) ≤
τ(z) ≤ c (always by comparison theorems in ODE). In particularη1([0,1]) is contained in
K(c).
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Fig. 3.

Remark 3.2. A second curveη2 will be constructed in the following way starting fromη1.
On any minimizerwi (i = 1, . . . , N) consider the pointmi such thatd(wi(si−1),mi) =
d(mi, w(si)).

Fori = 1, . . . , N , we denote byλi the maximal integral curve ofW such thatλi(0) = mi ;
moreover, we setλN+1(s) = γ (s + τ(η1)) (see Fig. 4).

Consider now the following subdivision of the interval [0,1]. Let σ0 = 0, σ1 = 1/2N ,
σj = (2j − 1)/2N for j = 2, . . . , N , andσN+1 = 1.

Denote byu1 the minimizer ofτ on L+
p,λ1,ε

([σ0, σ1]), by u2 the minimizer ofτ on

L+
u1(σ1),λ2,ε

([σ1, σ2]) and so, inductively, we denote byuj the minimizer of τ in
Luj−1(σj−1),λj ,ε([σj−1, σj ]), j = 2, . . . , N + 1.

Finally (see Fig. 5), we denote byη2 the curve such thatη2|[σj−1,σj ] = uj .
Using again comparison theorems in ordinary differential equations one proves that

τ(η2) ≤ τ(η1).

The continuous flowη(σ, z) can be constructed as follows. Fixσ ∈ [0,1] and consider
for instance the interval [s0, s1]. We chooseη(σ, z)|[s0,s1] as follows. Setp = (x0,0) and
γ1(s) = (x1, t1+s) (in some neighborhoodUj as in Remark 3.1). Sincez(s) = (x(s), t (s)),
the curvex(s) joinsx0 with x1.
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Fig. 4.

Let y(σ ) be the minimizer of the functional

y 7→
∫ σs1

s0

〈
Γi

βi
(y, ty), ẏ

〉
0

ds +
∫ σs1

s0

√〈
αi

βi
(y, ty), ẏ, ẏ

〉
0
+
〈
Γi

βi
(y, ty), ẏ

〉2
0

ds (3.2)

with boundary conditionsy(0) = x0 andy(σs1) = x(σs1), wherety is the solution of (3.2)
with ty(0) = 0 in the interval [0, σ s1].

Denote byŷ(σ ) the extension ofy(σ ) to [s0, s1] taking ŷ(s) = x(s) for s ∈ [σs1, s1].
Finally, denote bŷty the corresponding solution of (3.1) in the interval [s0, s1]. The curve
(ŷ(σ ), t̂y(σ )) will be η(σ, z) in the interval [s0, s1]. In the same way we can construct
η(σ, z) on the other intervals [si−1, si ]. Note that, by construction,η(1, z) = η1. Similarly,
we can extend the flowη to a map defined on [0,2] × τ c in such a way thatη(2, z) = η2.

Now we iterate the shortening argument above, replacing the original curvez with the
curveη2. Successively, we apply the above construction starting fromη2. By induction we
obtain a flowη(σ, z)defined onR+×τ c. Note thatτ(η(σ, z)) ≤ τ(z) for anyσ and for anyz.

Suppose thatτ(η1) = τ(η2) and consider the situation is a single interval [σj , σj+1].
Sinceτ(η1) = τ(η2) simple comparison theorems in ODE show thatη1 is a minimizer on
the interval [σj , σj+1]. Suppose that it consists of two (nonconstant) light-like geodesics.
If it is not a light-like geodesic, by the above construction it has a discontinuity atsj+1 =
(σj+1 + σj )/2. Denote byUη1 the parallel transport oḟγ (τ(η1)) along the curveη1. Since
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Fig. 5.

η1 is a minimizer, by (2.23),∫ σj+1

σj

〈DsV, η̇1〉
〈Uη1, η̇1〉 ds = 0

for anyC∞-vector field alongη1 such thatV (0) = 0, V (1) = 0. In particular η̇1
〈Uη1,η̇1〉 is a

C1 curve and also

−ε2

〈Uη1, η̇1〉2

is of classC1, and this implies thatη1 is of classC1 because〈Uη1, η̇1〉 never changes its
sign.

Then, whenever we are far from critical points ofτ onL+
p,γ,ε , τ(η2) < τ(η1).

Finally compactness arguments similar to the ones used for the shortening method for
Riemannian geodesics (cf. [14]) allows to obtain the analog of the classical deformation
results (cf e.g. [12,24]) for the functionalτ onL+

p,γ,ε .
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For anyd ∈ R setτd = {z ∈ L+
p,γ,ε : τ(z) ≤ d}.

Proposition 3.3. Letc be a regular value forτ onL+
p,γ,ε (namelyτ−1({c}) does not contain

geodesics).
Then, there exists a positive numberδ = δ(c) and a continuous mapH ∈ C0([0,1] ×

τ c+δ, τ c+δ) such that
1. H(0, z) = z for everyz ∈ τ c+δ;
2. H(1, τ c+δ) ⊆ τ c−δ;
3. H(σ, z) ∈ τ c−δ for anyσ ∈ [0,1] andz ∈ τ c−δ.

Proposition 3.4. LetZc be the set of the time-like geodesics onτ−1({c})∩L+
p,γ,ε . Then for

any open neighborhoodU ofZc, there exists a positive numberδ = δ(U, c) and a homotopy
H ∈ C0([0,1] × τ c+δ, τ c+δ) such that
1. H(0, z) = z for anyz ∈ τ c+δ;
2. H(1, τ c+δ \ U) ⊂ τ c−δ;
3. H(σ, z) ∈ τ c−δ for everyσ ∈ [0,1] andz ∈ τ c−δ.

Remark 3.5. There are two main differences between the shortening method described
above and the classical shortening method for Riemannian geodesics. In our case, we
locally minimize a functional which is is not given in an integral form. Secondly, we min-
imize the functional in the space of curves joining a point with a curve, and not two fixed
points.

Remark 3.6. The flow used in proving Propositions3.3and3.4are just what we need for
a Ljusternik–Schnirelmann theory. Then, without using the nondegeneracy assumption of
Theorem1.3 we can obtain the existence of at leastcat(L+

p,γ,ε) future pointing time-like
geodesics inL+

p,γ,ε . (Here catX denotes the minimal number of contractible subsets of
X covering it.) Moreover, if cat(L+

p,γ,ε) = +∞ there is a sequencezn of future pointing
time-like geodesics inL+

p,γ,ε such thatτ(zn) → +∞. (Recall that we are assuming thatγ
is defined onR.)

4. The index theorem and the Morse relations onL+
p,γ,εL+
p,γ,εL+
p,γ,ε

In this section we shall prove the Morse relations onL+
p,γ,ε and the second part of

Theorem 1.2, namely Theorem 4.1.

Theorem 4.1. Let z be a geodesic inL+
p,γ,ε such thatz(1) is nonconjugate top alongz.

Then

µ(z) = m(z, τ),

whereµ(z) is the geometric index ofz andm(z, τ) is the Morse index ofz considered as a
critical point of τ onL+

p,γ,ε .
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In order to prove Theorem 4.1, we first need to evaluate the Hessian ofτ at z,

Hτ (z)[ζ, ζ ] = d2

dσ 2
(τ (η(σ, ·)))σ=0,

whereζ ∈ TzL+
p,γ,ε andη :] − σ0, σ0[→ L+

p,γ,ε is a variation ofz with variational vector
field ζ , i.e.

η(0, s) = z(s) for anys ∈ [0,1], ησ (0, s) = ζ(s) for anys ∈ [0,1].

Hereησ denotes the partial derivative with respect toσ .

Proposition 4.2. In the notation above, for allζ ∈ TzL+
p,γ,ε ,

Hτ (z)[ζ, ζ ] = −1

〈γ̇ (τ (z)), ż(1)〉
∫ 1

0
(〈Dsζ,Dsζ 〉 − 〈R(ζ, ż)ż, ζ 〉)ds. (4.1)

Proof. Sinceη(σ, ·) ∈ L+
p,γ,ε for anyσ , we have

〈ηs(s, σ ), ηs(s, σ )〉 = −ε2, for anys and for anyσ.

Hereηs denotes the partial derivative ofη with respect tos. Sincez is of classC2, it suffices
to prove (4.1) wheneverζ (and thereforeη) is of classC2 and apply standard density
arguments. We have

∂

∂σ

(∫ 1

0
〈ηs, ηs〉 ds

)
= 0

and therefore

0=
∫ 1

0
〈Dσηs, ηs〉 ds =

∫ 1

0
〈Dsησ , ηs〉 ds

= 〈ησ (σ,1), ηs(σ,1)〉 − 〈ησ (σ,0), ηs(σ,0)〉 −
∫ 1

0
〈ησ ,Dsηs〉 ds. (4.2)

Now, sinceγ (τ(η(σ, ·))) = η(σ,1), we have

γ̇ (τ (η(σ, ·))) dτ

dσ
(η(σ, ·)) = ησ (σ,1),

therefore, sinceησ (σ,0) = 0 for anyσ , by (4.2) we have

dτ

dσ
(η(σ, ·))= 〈ησ (σ,1), ηs(σ,1)〉

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉

= 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉
∫ 1

0
〈ησ ,Dsηs〉 ds.

Note that〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉 6= 0 because botḣγ (τ(η(σ, ·)))andηs(σ,1)are time-like
vectors.
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Then, sinceDsż = 0, we get

d2τ

dσ 2
(η(σ, ·))|σ=0 = d

dσ

(
1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉
)∫ 1

0
〈ζ,Dsηs〉 ds

+ 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉
d

dσ

(∫ 1

0
〈ησ ,Dsηs〉 ds

)
σ=0

= 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉

×
(∫ 1

0
(〈Dσησ ,Dsηs〉 + 〈ησ ,DσDsηs〉)ds

)
σ=0

= 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉

(∫ 1

0
〈ησ ,DσDsηs〉 ds

)
σ=0

.

SinceDσDsηs = DsDσηs + R(ησ , ηs)ηs (cf. [1]), we have

Hτ (z)[ζ, ζ ] = 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉
∫ 1

0
(〈ησ ,DsDσηs + R(ησ ηs)ηs〉 ds)σ=0

= 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉 (〈ησ (σ,1),Dσηs(σ,1)〉

−〈ησ (σ,0),Dσηs(σ,0)〉)σ=0 + 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉

×
[(

−
∫ 1

0
〈Dsησ ,Dσηs〉 ds +

∫ 1

0
〈R(ησ , ηs)ηs, ησ 〉 ds

)]
σ=0

= 1

〈γ̇ (τ (η(σ, ·))), ηs(σ,1)〉

(
〈ζ(1),Dζ(1)ż(1)〉 − 〈ζ(0),Dζ(0)ż(0)〉

−
∫ 1

0
〈Dsζ,Dsζ 〉 ds +

∫ 1

0
〈R(ζ, ż)ż, ζ 〉 ds

)
.

Finally, ζ(0) = 0 and by Remark 2.11,ζ(1) = 0. �

Let z be a geodesic inL+
p,γ,ε . For anyθ ∈ ]0,1], set

Aθ = {ζ ∈ H 1,2([0, θ ], TM) : ζ(s) ∈ Tz(s)M for any s ∈ [0, θ ],

〈Dsζ, ż〉 = 0 a.e., ζ(0) = 0, ζ(θ) = 0}.
We consider the bilinear form onAθ given by

Jθ (z)[ζ, ζ ] =
∫ θ

0
(〈Dsζ,Dsζ 〉 − 〈R(ζ, ż)ż, ζ 〉)ds. (4.3)

Lemma 4.3. Let ζ0 ∈ Aθ . In the above notations,Jθ (z)[ζ0, ·] = 0 in Aθ , if and only ifζ0
solves(1.2) in [0, θ ].
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Proof. Let V ∈ C∞
0 ([0, θ ], TM) such thatV (s) ∈ Tz(s)M, for anys ∈ [0, θ ]. Sincez is

a geodesic, we can describe all the elements ofAθ by

ζ = V + 〈V, ż〉
ε2

ż.

Indeed,ζ(0) = 0, ζ(θ) = 0 and〈Dsζ, ż〉 = 0 because〈ż, ż〉 = −ε2 andDsż = 0.
Then,Jθ (z)[ζ0, ζ ] = 0 for anyζ ∈ Aθ if and only if∫ θ

0

(〈
Dsζ0,DsV + 〈DsV, ż〉ż

ε2
ż

〉
−
〈
R(ζ0, ż)ż, V + 〈V, ż〉ż

ε2

〉)
ds = 0

for anyV ∈ C∞
0 ([0,1],M) such thatV (s) ∈ Tz(s)M for anys ∈ [0, θ ].

But 〈Dsζ0, ż〉 = 0 becauseζ0 ∈ Aθ and〈R(ζ0, ż)ż, ż〉 = 0 by well-known properties of
the Riemann tensor. Therefore,Jθ (z)[ζ0, ζ ] = 0 for anyζ ∈ Aθ if and only if∫ θ

0
(〈Dsζ0,DsV 〉 − 〈R(ζ0, ż)ż, V 〉)ds = 0

for anyV ∈ C∞
0 ([0,1],M) with V (s) ∈ Tz(s)M for anys ∈ [0, θ ]. Then, an integration

by parts completes the proof. �

We are finally ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recalling (2.4), sincėz is a time-like vector field, a simple com-
pactness argument shows the existence ofν = ν(z) > 0 such that

〈w,w〉 ≥ ν(z)〈w,w〉(R)
for any vector fieldw alongz such that〈w(s), ż(s)〉 = 0 for anys. Moreover, sinceγ is an
integral curve ofY andż(1) is future pointing,〈γ̇ (τ (z)), ż(1)〉 < 0. Therefore, by (4.1), for
anyθ ∈]0,1] the linear operator associated to the bilinear formJθ is a compact perturbation
of the identity operator if we equipAθ with the natural Riemannian structure given by∫ θ

0
〈D(R)s ζ,D(R)s ζ 〉(R) ds.

Then we can use the methods of Milnor in [14] (cf. also [11]) and Lemma 4.3 to conclude
the proof. �

Now we can prove the classical Morse relations on the sublevels ofτ onL+
p,γ,ε . They can

be stated in the following way. For anyb ∈ R ∪ {+∞} set,

G+,b
p,γ,ε = { z ∈ C2([0,1],M) : z is a future pointing geodesic such thatz(0)

= p, z(1) ∈ γ (R), 〈ż, ż〉 ≡ −ε2, τ (z) ≤ b}.

Theorem 4.4. Assume that(M, 〈·, ·〉) is strongly causal and that assumptions1—3of
Theorem1.3 hold true. Then, for any fieldK and for any regular valueb of τ onL+

p,γ,ε ,
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b ∈]inf τ,+∞], there exists a formal seriesS(λ) with non negative integer coefficients
(possibly+∞ if b = +∞) such that∑

z∈G+,b
p,γ,ε

λµ(z) = Pλ(τ b,K)+ (1 + λ)S(λ), (4.4)

wherePλ(τ b,K) is the Poincaré polynomial ofτb with coefficients inK.

Proof. By Lemma 4.3 and assumption 2 of Theorem 1.3, any critical point ofτ onL+
p,γ,ε

is nondegenerate (and therefore isolated). Moreover, using the geodesic equation, it is
not difficult to prove that for everyb ∈ R, the setG+,b

p,γ,ε is compact with respect to the

C2-topology. Hence, for allb ∈ R, the setG+,b
p,γ,ε is finite.

By the deformation results of Propositions 3.3 and 3.4, sinceτ is of classC2 on the
Hilbert manifoldL+

p,γ,ε we can apply the classical Morse theory (cf. [3,12]) to describe the
topology nearby the geodesics obtaining the classical Morse relations∑

z∈G+,b
p,γ,ε

λm(z,τ ) = Pλ(τ b,K)+ (1 + λ)S(λ).

Herem(z, τ) denotes the Morse index of the critical pointsz for the functionalτ in
the Hilbert manifoldL+

p,γ,ε . Finally, thanks to Theorem 4.1, the Morse relations (4.4)
follow. �

Proof of Theorem 1.3. By Theorem 4.4, settingb = +∞ we have∑
z∈G+

p,γ,ε

λµ(z) = Pλ(L+
p,γ,ε,K)+ (1 + λ)S(λ)

obtaining the proof. �

5. Some relations betweenL+
p,γL+
p,γL+
p,γ andL+

p,γ,εL+
p,γ,εL+
p,γ,ε

In this section we will discuss the method of approximation of the spaceL+
p,γ with the

regular manifoldsL+
p,γ,ε , pointing the results needed to obtain the Morse relations onL+

p,γ

as limit of the Morse relations onL+
p,γ,ε .The first result, which is stated in the following

proposition, is concerned with the existence of transition functions betweenL+
p,γ andL+

p,γ,ε .

Proposition 5.1. Suppose thatτ is pseudo-coercive inL+
p,γ . Then, for anyc > inf τ , there

exists a positive numberε0 = ε0(c) > 0 such that for everyε ∈]0, ε0] there exist two
injective maps:

φε : τ c ∩ L+
p,γ → L+

p,γ,ε, ψε : L+
p,γ,ε → L+

p,γ

such that
1. φε andψε are continuous with respect to theH 1,1-norm;
2. for everyz ∈ τ c ∩ L+

p,γ , ψε(φε(z)) = z;
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3. for everyz ∈ L+
p,γ,ε such thatτ(ψε(z)) ≤ c, φε(ψε(z)) = z;

4. if ε1 < ε2, thenτ(φε1(z)) ≤ τ(φε2(z)) andτ(ψε1(z)) ≥ τ(ψε2(z));
5. τ(φε(z)) ≥ τ(z) andτ(ψε(z)) ≤ τ(z);
6. there exists a positive constantM = M(c) such thatd2(φε(z), z) ≤ M · ε for every
z ∈ τ c ∩ L+

p,γ , whered2 is the metric induced by the Hilbert structure(2.4).

Proof. We fixc and we find a compact subsetK such that the support of everyz ∈ τ c∩L+
p,γ

lies inK. Letδ be a positive number such that the flowΦ(s, q)of the vector fieldY is defined
on [−δ, δ] × K. By definition, the curveηq(s) = Φ(s, q) is the maximal solution of the
Cauchy problem:

η̇ = Y (η), η(0) = q.

For z ∈ τ c ∩ L+
p,γ , we define

zε(s) = φε(z)(s) = Φ(σz,ε(s), z(s))

for some functionσz,ε(s) = σ(s) on [0,1] and with values in [0, δ) to be determined in
such a way that

σz,ε(0) = 0

(which means thatzε(0) = p),

〈żε , Y (zε)〉 < 0 (5.1)

and

〈żε , żε〉 = −ε2.

Observe that any such curve automatically satisfieszε(1) ∈ γ (R) sinceγ is an integral
curve ofY andΦ(0, z(1)) = z(1) ∈ γ (R).

We computėzε as follows:

żε = Φq [ż] +Φσ [σ̇ ] = Φq [ż] + Y (zε)σ̇ ,

whereΦq andΦσ denote the partial derivatives ofΦ. So, we have

〈żε , żε〉 = 〈Y, Y 〉σ̇ 2 + 2σ̇ 〈Y (zε),Φq [ż]〉 + 〈Φq [ż], Φq [ż]〉 = −ε2. (5.2)

Formula (5.2) contains a quadratic equation onσ̇ ; observe that, by the wrong way Schwartz
inequality, the discriminant∆ of (5.1) is positive:

∆

4
= 〈Y (zε),Φq [ż]〉2 − 〈Y (zε), Y (zε)〉〈Φq [ż], Φq [ż]〉 + ε2 ≥ ε2 > 0. (5.3)

Take the solutionσ of (5.2) given by

σ̇ = −〈Y (zε), Y (zε)〉−1(〈Y (zε),Φq [ż]〉 + 1
2

√
∆),
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where∆ is given by (5.3). Notice that, with this choice

〈żε , Y (zε)〉 = σ̇ 〈Y (zε), Y (zε)〉 + 〈Y (zε),Φq [ż]〉 = −1
2

√
∆ < 0,

and (5.1) is satisfied. Observe also that the coefficients of (5.2) clearly depend continuously
on ε. The functionσ has to satisfy the Cauchy problem:

σ̇ = −〈Y (zε), Y (zε)〉−1(〈Y (zε),Φq [ż]〉 + 1
2

√
∆), σ(0) = 0. (5.4)

Observe that, forε = 0, (5.4) has the null solution, which is defined on the whole real line.
Hence, forε small enough, (5.4) admits a unique solution defined on all the interval [0,1].
Moreover, ifε is chosen small enough, we can also assume that the solutionσ of (5.4) takes
values in [−δ, δ] so that the curvezε = Φ(σ, z) is well defined.

The construction of the mapψε is done in a similar fashion considering the flowΨ (s, q)
of the vector fieldY , and setting

ψε(z)(s) = zε(s) = Ψ (σ(s), z(s)),

whereσ = σz,ε is to be determined with the conditions

σ(0) = 0, 〈żε , żε〉 = 0 and 〈żε , Y (zε)〉 ≤ 0.

An argument similar to the previous case shows the existence and the continuity properties
of the mapσ , which proves the first part of the proposition.

Elementary comparison theorems for ordinary differential equations allow to show that
for all z ∈ L+

p,γ,ε , the Cauchy problem (5.4) has solution defined on the whole interval
[0,1]. Therefore, the mapψε is defined on the whole spaceL+

p,γ,ε .
Parts 2 and 3 follows immediately from the construction ofφε andψε .
Parts 4 and 5 follows from simple comparison theorems in ODE applied to (5.4), while

part 6 follows from the Gronwall’s lemma. �

We need also the following proposition.

Proposition 5.2. Let z be a geodesic inL+
p,γ with z(1) nonconjugate top alongz. Then

there existsε0 > 0 such that for anyε ∈ ]0, ε0] there exists one and only one geodesic
zε ∈ L+

p,γ,ε such that

lim
ε→0

zε = z0 in theH 1,2-norm.

Remark 5.3. Notice that ifzε converges toz0 in theH 1,1-norm, using the Cauchy problem
related to the geodesic equation we immediately get that the convergence is also with respect
to theC2-norm, i.e., uniform up to the second derivative.

Proof. Sincez(1) is nonconjugate top, the map

v → expp v
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is a local diffeomorphism between a neighborhood ofż(0) in TpM and a neighborhood of
z(1) = expp(ż(0)) ∈ γ (R) inM. Then there exists aC1-mapϕ : ] − δ0, δ0[→ TpM such
that

ϕ(0) = 0, expp(ż(0)+ ϕ(δ)) = γ (τ(z)+ δ). (5.5)

Differentiating with respect toδ and settingδ = 0, we obtain

d expp(ż(0))[ϕ
′(0)] = γ̇ (τ (z)). (5.6)

The following lemma is needed. �

Lemma 5.4. Fix v0 ∈ TpM light-like and future pointing. SetV = d expp(v0)[v]. Assume
thatV is time-like and future pointing. Then〈v, v0〉 < 0.

Proof. Denote byz the geodesic such thatz(0) = p and ż(0) = v0. As known, since
v0 = ż(0), d expp(v0)[v] is given byZ(1), whereZ is the unique Jacobi field alongz such
thatZ(0) = 0 andDsZ(0) = v. Sinceζ(s) = sż(s) is the unique Jacobi field alongz such
thatζ(0) = 0 andDsζ(0) = ż(0) = v0, we have

d expp(v0)[v0] = ż(1). (5.7)

Now, by the Gauss lemma (cf. [1]), for anyv ∈ TpM, we have

〈d expp(v0)[v0], d expp(v0)[v]〉 = 〈v0, v〉. (5.8)

By (5.7),V0 = d expp(v0)[v0] is light-like and future pointing. Indeed,ż(1) is light-like
and future pointing sincėz(0) = v0 is light-like and future pointing. Moreover,V =
d expp(v0)[v] is time-like and future pointing by assumption, therefore〈V0, V 〉 < 0. Then,
by (5.8) the proof is complete. �

Now, let us go back to the proof of Proposition 3.2
Sinceγ̇ (τ (z(1))) is time-like and future pointing, by (5.6) and Lemma 5.4 we get

〈ϕ′(0), ż(0)〉 < 0. (5.9)

By (5.9), sinceϕ(0) = 0 and〈ż(0), ż(0)〉 = 0 up to the choice of a smallerδ0, we immedi-
ately obtain

〈ż(0)+ ϕ(δ), ż(0)+ ϕ(δ)〉 < 0 ∀δ > 0. (5.10)

Moreover, sinceϕ(0) = 0, for anyδ sufficiently small,

〈ż(0)+ ϕ(δ), Y (z(0))〉 < 0. (5.11)

Then we can conclude the proof takingε0 = ε0(δ0) and

ε = ε(δ) =
√

−〈ż(0)+ ϕ(δ), ż(0)+ ϕ(δ)〉, (5.12)

which is well defined because of (5.10).
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Indeed the geodesiczε such thatzε(0) = p andżε(0) = z(0) + ϕ(δ) is in L+
p,γ,ε since

by (5.12)〈żε , żε〉 = −ε2.
Moreover, by (5.11)̇zε(0) is future pointing so thatzε(s) is time-like and future pointing

for anys. Finally, theC2 convergence ofzε to z is obvious by the continuous dependence
of the solutions of differential equations on its data. �

We conclude the section with an useful result for the proof of Theorem 1.6.

Proposition 5.5. Suppose thatτ is pseudo-coercive onL+
p,γ . Let(εn)n∈N be a sequence of

positive numbers converging to0 andzn ∈ L+
p,γ,εn

be a sequence of curves such that

sup
n
τ (zn) = c < +∞.

Then, denoting byl(zn) the length ofzn with respect to the Riemannian metric(2.4),

sup
n
l(zn) < +∞.

Moreover, there existsK, compact subset ofM, such thatzn([0,1]) ⊂ K for anyn.

Proof. Denote byz̃n the sequence

z̃n = ψεn(zn) ∈ L̂+
p,γ . (5.13)

By 5 of Proposition 5.1,τ(z̃n) ≤ τ(zn) ≤ c. Then, by the same arguments used in the proof
of Lemma 2.6, we see that the pseudo-coercivity ofτ implies that

l(z̃n) ≤ c̃ < +∞ for anyn, (5.14)

and there exists a compact subset ofM containing the images of all thẽzn’s. Moreover,
sincezn = φεn(ψεn(zn)), by (6) of Proposition 5.1 there existsM > 0 such that

d2(z̃n, zn) ≤ M · εn.
Therefore, it follows thatl(zn) is bounded and there exists a compact subset ofM containing
the images of thezn’s. �

6. The limit process and the Morse relations onL+
p,γL+
p,γL+
p,γ

In this section we shall prove Theorems 1.6 and 1.4.

Proof of Theorem 1.6. Let zn be as in the statement of Theorem 1.6. Sinceτ(zn) ≤ c for
all n, by Proposition 5.5 there exists a compact subsetK ofM and a positive constantC
such that

zn([0,1]) ⊂ K and l(zn) ≤ C ∀ n ∈ N.
Then, the proof is obtained passing to the limit asε → 0 in the Cauchy problem related to
the geodesic equation satisfied by thezn’s. �
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Proof of Theorem 1.4. Let c be a regular value forτ onL+
p,γ , i.e., τ−1(c) ∩ L+

p,γ does

not contain geodesics. By assumption 2, all the geodesics inτ−1(c) ∩L+
p,γ are isolated. A

simple compactness argument shows that they are finite. By Proposition 5.2 there exists a
positive numberε(c) such that for any geodesiczi in τ−1(c)∩L+

p,γ and for anyε ∈]0, ε(c)],

there exists a unique geodesicziε ∈ τ−1(c) ∩ L+
p,γ,ε approachingzi for any i = 1, . . . , k.

Chooseε(c) ≤ ε0(c) given by Proposition 5.1 and denote (for anyε ∈ ]0, ε0]) by cε the
minimal real number such that

φε(τ
c ∩ L+

p,γ ) ⊂ τ cε ∩ L+
p,γ,ε,

whereφε is defined in Proposition 5.1.
If ε(c) is sufficiently small, anycε is a regular value forτ onL+

p,γ,ε for all ε ∈ [0, ε(c)]
and for any geodesic inL+

p,γ,ε “correspond” to a unique geodesic onL+
p,γ (having the same

geometric index) (cf. Proposition 5.2 and Theorem 1.7).
Moreover, choosingε(c) small enough, by the pseudo-coercivity ofτ onL+

p,γ we have
the existence of a compact subsetK = K(c) ofM and of a positive constantL = L(c)

such thatz([0,1]) ⊂ K andl(z) ≤ L(c) for all ε ∈ [0, ε(c)] and for allz ∈ τ cε ∩ L+
p,γ,ε

(cf. Proposition 5.5).
This allows us to use the curve shortening method at every levelb ≤ cε and Propositions

3.3 and 3.4.
Arguing as in the proof of Theorem 4.4 and using Theorem 4.1, we can write the following

Morse relations valid for everyε ∈]0, ε(c)] and every coefficients fieldK:∑
zε∈G+,cε

p,γ,ε

λµ(zε) = Pλ(τ cε ∩ L+
p,γ,ε,K)+ (1 + λ)Sε(λ), (6.1)

whereG+,d
p,γ,ε = G+

p,γ ∩ τd .
Now choose a monotone sequencecm of regular values forτ onL+

p,γ such thatcm →
+∞. For anym let εm = ε(cm) as above. Letdm be the minimal real number such that

φε(τ
cm ∩ L+

p,γ ) ⊂ τdm ∩ L+
p,γ,ε for anyε ∈ [0, εm].

(Note thatdm ≥ cm.) By (6.1), Propositions 5.1 and 5.2 and Theorem 1.7 we deduce∑
z∈G+,dm

p,γ

λµ(z) = Pλ(ψεm(τdm ∩ L+
p,γ,εm

),K)+ (1 + λ)S ′
m(λ),

whereS ′
m is a polynomial with nonnegative integer coefficients.

By the exactness in singular homology of the pair(L+
p,γ , ψεm(τ

dm ∩ L+
p,γ,εm

)), there
exists a formal seriesRm (with coefficients inN ∪ {+∞}) such that (cf. e.g. [12])

Pλ(ψεm(τ
dm ∩ L+

p,γ,εm
))+Pλ(L+

p,γ , ψεm(τ
dm ∩ L+

p,γ,εm
)=Pλ(L+

p,γ )+(1 + λ)Rm(λ).

Then, there exists a formal seriesSm such that∑
z∈G+,dm

p,γ

λµ(z) + Pλ(L+
p,γ , ψεm(τ

dm ∩ L+
p,γ,εm

)) = Pλ(L+
p,γ )+ (1 + λ)Sm(λ). (6.2)
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LetN(l,m)be the number of light-like geodesics inψεm(τ
dm∩L+

p,γ,εm
)having geometric

index equal tol. By Proposition 5.1, the subsetsψεm(τ
dm∩L+

p,γ,εm
)are ordered by inclusion.

ThenN(l,m) is nondecreasing inm and tends, asm → +∞, to the numberN(l) of the
light-like geodesics inL+

p,γ having geometric index equal tol. SinceN∪{+∞} is compact
(with respect to its usual convergence), a diagonalization argument shows the existence of
a subsequence(mk)k∈N such that for anyl ∈ N the sequences(bl,mk ) of the formal series
Smk in (6.2) converges tobl ∈ N ∪ {+∞}. Then, up to considering subsequences, every
coefficientbl,m of Sm is convergent tobl . We shall prove (1.4) arguing for any coefficient
l ∈ N. If N(l) = +∞, either thelth coefficientβl of Pλ(L+

p,γ ,K) is equal to+∞, or at
least one betweenbl−1 andbl is equal to+∞. In any case,

N(l) = βl + bl−1 + bl, (6.3)

obtaining (1.4) relatively to thelth coefficient.
Assume now thatN(l) < +∞. Let

b∗ = max{τ(z) : z ∈ G+
p,γ , µ(z) = q}. (6.4)

By (6.2), in order to prove (6.3), it suffices to show the vanishing of the Betti number:

βl(L
+
p,γ , ψεm(τ

dm ∩ L+
p,γ,εm

)) = 0 ∀m such thatcm > b∗. (6.5)

Assume by contradiction that (6.5) does not hold. Let∆m be a nontrivial element of the
homology groupHl(L+

p,γ , ψεm(τ
dm ∩ L+

p,γ,εm
)) and letKm be its compact support. Now

for anyε ∈]0, εm], by Proposition 5.1, there existsµm > 0 (infinitesimal asεm tends to 0)
such that

ψεm(τ
dm ∩ L+

p,γ,εm
)⊂ψε(τ

dm ∩ L+
p,γ,ε) ⊂ ψεm(τ

dm+µm ∩ L+
p,γ,εm

)

⊂ψε(τ
dm+µm ∩ L+

p,γ,ε).

Now, choosingεm small enough, we can assume that there are no geodesics in the strip
τ−1([dm, dm + µm]) ∩ L+

p,γ,ε for all ε ∈]0, εm]. Then, if εm is small,ψεm(τ
dm ∩ L+

p,γ,εm
)

is a strong deformation retract ofψεm(τ
dm+µm ∩L+

p,γ,εm
) andψε(τdm ∩L+

p,γ,ε) is a strong
deformation retract ofψε(τdm+µm ∩ L+

p,γ,ε) for any ε ∈]0, εm]. (Recall thatY ⊂ X is a
strong deformation retract ofX if there exists a continuous mapH : [0,1] × X such that
H(0, ·) is the identity onX,H(s, ·) is the identity onY for all s, andH(1, X) ⊂ Y .)

Then, by standard techniques in Algebraic Topology we have that for anyk ∈ N,

i∗k : Hk(L
+
p,γ , ψεm(τ

dm ∩ L+
p,γ,εm

)) → Hk(L
+
p,γ , ψε(τ

dm ∩ L+
p,γ,ε))

(where i denotes the inclusion map) is an isomorphism. Therefore, there exists∆ε ∈
Hl(L+

p,γ,ε, ψε(τ
dm ∩ L+

p,γ )) \ {0} with supportKm. Finally, choose

Cm > sup{τ(z) : z ∈ Km ∩ L+
p,γ }, Cm regular value forτ onL+

p,γ .

(Clearly,Cm can be chosen larger thandm.) Using the exactness of the triple(L+
p,γ , ψε(τ

Cm∩
L+
p,γ,ε), ψε(τ

dm ∩ L+
p,γ,ε)) gives the existence of
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Γε ∈ Hl(ψε(τCm ∩ L+
p,γ,ε), ψε(τ

dm ∩ L+
p,γ,ε)) \ {0}

with supportKm.
Sinceψε is an homeomorphism there exists

Γ̂ε ∈ Hl(τCm ∩ L+
p,γ,ε, τ

dm ∩ L+
p,γ,ε) \ {0}

with supportKm. Using the curve shortening method and the classical Morse theory nearby
critical points shows the existence ofε̂ ∈ ]0, εm] such that for anyε ∈ ε̂ we have the
existence of a geodesiczε ∈ τ−1([dm,Cm]) ∩ L+

p,γ,ε having indexl (see Theorem 4.4).
Finally sendingε to 0, by Theorems 1.6 and 1.7 we obtain the existence of a geodesicz in
L+
p,γ such that

µ(z) = q, τ (z) ∈ [dm,Cm].

In particularτ(z) ≥ dm ≥ cm > b∗ in contradiction with (6.4). �
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